Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H_{2} on Ag(111).

نویسندگان

  • Reinhard J Maurer
  • Bin Jiang
  • Hua Guo
  • John C Tully
چکیده

Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H_{2} on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Dissociative Gas Adsorption with Different Chemisorption Geometries on Nanoporous Surfaces

Isotherm equation is one of the important scientific bases for adsorbent selection. There are different isotherms that do not account for an adsorbate, different chemisorption geometries on the nanoporous surface. It is interesting to introduce a general isotherm, which considers different chemisorption geometries of an adsorbate on nanoporous surfaces. In this study, an isotherm for non-dissoci...

متن کامل

Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: mode specificity and bond selectivity.

Dissociative chemisorption is the initial and often rate-limiting step in many heterogeneous processes. As a result, an in-depth understanding of the reaction dynamics of such processes is of great importance for the establishment of a predictive model of heterogeneous catalysis. Overwhelming experimental evidence has suggested that these processes have a non-statistical nature and excitations ...

متن کامل

Experimental and theoretical study of the adsorption of fumaramide [2]rotaxane on Au(111) and Ag(111) surfaces.

Thin films of fumaramide [2]rotaxane, a mechanically interlocked molecule composed of a macrocycle and a thread in a "bead and thread" configuration, were prepared by vapor deposition on both Ag(111) and Au(111) substrates. X-ray photoelectron spectroscopy (XPS) and high-resolution electron-energy-loss spectroscopy were used to characterize monolayer and bulklike multilayer films. XPS determina...

متن کامل

Aromatic molecules on low-index coinage metal surfaces: Many-body dispersion effects

Understanding the binding mechanism for aromatic molecules on transition-metal surfaces in atomic scale is a major challenge in designing functional interfaces for to (opto)electronic devices. Here, we employ the state-of-the-art many-body dispersion (MBD) approach, coupled with density functional theory methods, to study the interactions of benzene with low-index coinage metal surfaces. The ma...

متن کامل

Trends in adsorption of open-shell atoms and small molecular fragments on the Ag(111) surface

The chemisorption of various atoms (C, N, O, Cl) and molecular fragments (OH, NH, CH, NH2, CH2) on the Ag(111) surface has been studied by employing the embedded cluster and multireference singleand double-excitation configuration interaction (MRD-CI) methods. Ground and excited states of the cluster–adsorbate systems have been computed and molecular orbitals (MOs) as well as electronic charge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 118 25  شماره 

صفحات  -

تاریخ انتشار 2017